41 research outputs found

    Towards the Implementation of a MPC-based Planner on an Autonomous All-Terrain Vehicle

    Get PDF
    Planning and control for a wheeled mobile robot are challenging problems when poorly traversable terrains, including dynamic obstacles, are considered. To accomplish a mission, the control system should firstly guarantee the vehicle integrity, for example with respect to possible roll-over/tip-over phenomena. A fundamental contribution to achieve this goal, however, comes from the planner as well. In fact, computing a path that takes into account the terrain traversability, the kinematic and dynamic vehicle constraints, and the presence of dynamic obstacles, is a first and crucial step towards ensuring the vehicle integrity. The present paper addresses some of the aforementioned issues, describing the hardware/software architecture of the planning and control system of an autonomous All-Terrain Mobile Robot and the implementation of a real-time path planner

    Walk-through programming for robotic manipulators based on admittance control

    Get PDF
    The present paper addresses the issues that should be covered in order to develop walk-through programming techniques (i.e. a manual guidance of the robot) in an industrial scenario. First, an exact formulation of the dynamics of the tool the human should feel when interacting with the robot is presented. Then, the paper discusses a way to implement such dynamics on an industrial robot equipped with an open robot control system and a wrist force/torque sensor, as well as the safety issues related to the walk-through programming. In particular, two strategies that make use of admittance control to constrain the robot motion are presented. One slows down the robot when the velocity of the tool centre point exceeds a specified safety limit, the other one limits the robot workspace by way of virtual safety surfaces. Experimental results on a COMAU Smart Six robot are presented, showing the performance of the walk-through programming system endowed with the two proposed safety strategies

    On the stability of integral force control in case of contact with stiff surfaces

    No full text

    Mobile robot navigation using passivity-based MPC

    No full text
    corecore